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Abstract. Fast self sustained waves of chemical or phase transformations, observed in several contexts in
condensed matter effectively result in “gasless detonation”. The phenomenon is modelled by coupling the
reaction diffusion equation, describing chemical or phase transformations, and the wave equation, describing
elastic perturbations. The coupling considered in this work involves (i) a dependence of the sound velocity
on the chemical (phase) field, and (ii) the destruction of the initial chemical equilibrium when the strain
exceeds a critical value (strain induced phase transition). Both the case of an initially unstable state
(first order kinetics) and metastable state (second order kinetics) are considered. An exhaustive analytic
and numerical study of travelling waves reveals the existence of supersonic modes of transformations.
The practically important problem of ignition of fast waves by mechanical perturbation is investigated.
With the present model, the critical strain necessary to ignite gasless detonation by local perturbations is
determined.

PACS. 82.20.Mj Nonequilibrium kinetics – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

Although front propagation accompanying chemical reac-
tions or phase transformations is in many cases controlled
by diffusive transfers (of mass or heat), other physical
mechanisms of propagation have been identified. A famous
example is provided by gaseous detonation [1,2]. Propa-
gation, which in this case results from a coupling between
combustion (chemistry) and gas compression (mechanics),
is very fast (supersonic), whereas diffusion driven propa-
gation is much slower (subsonic).

In a previous work [3], we proposed that for a num-
ber of physical systems, in condensed phases, propagation
results from a coupling between chemistry and propaga-
tion of elastic waves. Examples of phenomena where a
wave of transformation propagates very fast at a veloc-
ity of the order of the sound velocity include explosive
decomposition of tempered glass under high strain condi-
tions (such as the famous “Prince Rupert drops”) [4,5],
explosive decomposition of heavy metal azides [6], as well
as in semiconductors. It is also a possibility that catas-
trophic geotechtonic phenomena, such as earthquakes, are
due to gasless detonation processes of phase transforma-
tions in the earth’s crust (for example, explosive decay of
a metastable glassy state of rocks to a more stable, poly-
crystalline phase) [7,8,3]. The hypothesis of phase trans-
formations of rocks induced by a high value of the strain
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may in fact solve a number of difficulties with the cur-
rent theory of earthquakes [9]. In this spirit, the explosion
of “Prince Rupert’s drops” silicate glass matrices may be
regarded as a laboratory model of earthquakes. We men-
tion in a somewhat related context the phenomenon of
detonation boiling, whereby a front of vapour propagates
into overheated fluid, with a fast, albeit subsonic, veloc-
ity [10]. Also, some data about the transition between
slow and fast heat-mechano-chemical wave modes of, pos-
sibly, gasless detonation were discussed in the context of
cryochemistry of solids [11]. This physical phenomenon
may be very important, as the fast autowave concept may
help to explain the mystery of fast chemical evolution of
substances in the universe [12].

The standard theory of detonation cannot explain
these phenomena. A general model for this class of
phenomena was proposed in [3]. The main idea consists in
coupling the chemical (or phase) field, c, and the mechan-
ical field, the displacement in the solid, u. We consider
systems where a metastable or an unstable state at c = 0,
coexist with a more stable state at c = 1. When the strain
field, (∂xu) exceeds a certain threshold, (∂xu)c, the state
of equilibrium at c = 0 disappears, therefore inducing a
transformation to the stable state c = 1. The chemical
field influences propagation by modifying the sound veloc-
ity in the solid. This model was shown to lead to two kinds
of travelling wave solutions: slow (subsonic) waves, driven
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by diffusion, and fast (supersonic) waves, where propaga-
tion is induced by the mechanical process. Solutions were
explicitly determined in the case where the state c = 0 is
metastable.

The purpose of this work is to extend the theoretical
analysis of the model proposed in [3]. First, it is interest-
ing to know whether the travelling waves found in the case
of a metastable kinetics also exist when the c = 0 state
is unstable, especially since the precise nature of the ki-
netics of the chemical/phase transformation is not known.
Another rather important question is whether these trav-
elling waves are actually observable, in a time dependent
problem. This lead us to consider the problem of ignition
of a propagating wave, which is an important question for
practical applications. In the physical examples we have in
mind, waves are produced by a mechanical perturbation.
To this end, we study wave ignition by a perturbation of
the strain. In order to investigate these issues, we devel-
oped a numerical algorithm to integrate the equations of
the model.

Section 2 introduces in more details the model equa-
tion, introduces the notation, and describes our numerical
algorithm. In Section 3, we present our results concern-
ing travelling waves. The analysis of the ignition problem
is discussed in Section 4. Finally concluding remarks are
presented in Section 5.

2 Theoretical model

Our study is based on the interaction between a chemical
(or phase) field, c(x, t) and the displacement field, u(x, t).
In the following we restrict ourselves to a 1-dimensional
problem. The equations governing the evolution of the
system read:

∂2
t u− ∂x(V 2(c)∂xu) = 0 (1)

∂tc = f(c) +D∂2
xc+ w(c, ∂xu). (2)

Equation (1) is simply the equation of linear elasticity
assuming that the stress tensor τ is proportional to the
strain, ∂xu: τ = E × ∂xu, where E is the Young’s mod-
ulus [13]. The sound velocity, V , is assumed to depend
on c. This is a rather mild assumption, since V 2 = E/ρ,
and since it is reasonable to expect that E and ρ vary
when c varies. We assume in addition that V 2(c) increases
monotonically with c:

dV 2(c)
dc

≥ 0. (3)

In the physical processes we have in mind, we expect an
increase of E and a decrease of ρ when c increases. The im-
portance of this condition was recognized independently
by Sornette, in a similar context, using a slightly differ-
ent approach [9]. In the numerical study, we will use the
following form of V 2(c):

V 2(c) = V 2
0 + δV 2 tanh(c). (4)

On occasions, we have also considered the effect of a
viscous term in the elasticity equation (Eq. (1)):

∂2
t u− ν∂t∂2

xu− ∂x(V 2(c)∂xu) = 0. (5)

As expected, the viscous term introduces some dissipation
in the equation of elasticity. Our numerical results, see
below, demonstrate that the qualitative behavior of the
system is not modified by a small amount of viscosity. We
do not consider here plastic deformations, which would
presumably lead to a loss of acoustic transparency in the
solid, and may stop propagation of fast waves.

Equation (2) describes the kinetics of phase (chemical)
transformation. In the absence of the coupling term, w,
equation (2) reduces to a standard reaction diffusion equa-
tion. The kinetic function, f , was chosen to correspond to
a simple chain branched process: f(c) = Acn(1− c)− kc,
where n = 1 or n = 2. In the n = 1 case (first order kinet-
ics), the c = 0 equilibrium state is unstable, whereas in the
n = 2 case (second order kinetics), it is metastable. The
latter type of kinetics was considered in [3]. By redefin-
ing the constants, we write the first order kinetic function
(n = 1) as:

f(c) = Ac(1− c) (6)

and the second order kinetic (n = 2) as:

f(c) = Ac(c− 0.2)(1− c). (7)

It should be kept in mind that in the problems we are in-
terested in, diffusion is extremely small, so diffusion con-
trolled propagation is very slow. We consider here the two
cases of kinetics, n = 1 and n = 2. In the former case, we
expect important analogies with the classical problem of
autowave propagation (the so-called KPP problem, [16]).

The term w describes the coupling induced by the
strain. On general grounds, it is very reasonable to expect
that the thermodynamic state of the system is affected by
the applied strain, and that too high a strain induces a
phase transition. We assume that this term is 0 as long as
the strain, (∂xu) is less than the threshold value, (∂xu)c,
and w(∂xu, c) = W0(1−c) when (∂xu) has reached (∂xu)c.
Once turned on, the w term suppresses the metastable or
unstable equilibrium at c = 0, therefore inducing a phase
transition towards the other stable state at c = 1. Let τw
be the time it takes for the w term to turn off, after it
has turned on. The time τw is an unknown in the prob-
lem. Here, we will restrict ourselves to the case τw → ∞:
Once the w term has been turned on, it does not turn
off again. The other extreme limit τw → 0 can also be
considered [14].

In order to investigate the properties of this model,
we have integrated numerically the set of coupled equa-
tions (1, 2). The u-equation is hyperpolic, whereas the c-
equation is parabolic, which leads to different constraints
on the numerical algorithms [15].

It is convenient to rewrite equation (1) in terms of the
strain field:

∂2
t (∂xu)− ∂2

x(V 2(c)(∂xu)) = 0 (8)
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and to integrate it numerically as a set of two first order
partial differential equations:

∂t(∂xu) = v (9)

and:

∂tv = ∂2
x(V 2(c)(∂xu)). (10)

Space derivatives are discretized by finite differences. The
solution of equations (9, 10) is time-stepped with a leap-
frog scheme. Stability of the numerical scheme is guaran-
teed by a current condition (V ∆t < ∆x). In fact, accuracy
considerations forced us to use much smaller time steps.
The quality of the integration of the elasticity equation
was checked by following the propagation of a localized
perturbation in the case where V 2(c) is constant. For the
numerical studies presented in this work, we used a large
integration domain with zero flux boundary conditions.
The integration was stopped well before the elastic waves
reached the boundaries and before any reflection occurred.

The c-equation is integrated by using a finite difference
discretisation, and by using a standard Crank-Nicholson
time stepping. The boundary conditions were of Neu-
mann type (zero flux). Overall, our algorithm is second
order both in space and time. Our extensive checks of
the algorithm accuracy convinced us that our algorithm is
properly working.

3 Travelling wave solutions

In [3], travelling wave solutions were obtained in the case
where the c = 0 state is metastable. The first step consists
in noticing that c(x) = 0, ∂xu(x) = (∂xu)0 is a solution,
provided (∂xu)0 < (∂xu)c. Travelling waves propagating
at a velocity vf satisfy the following equations, in the
comoving frame (ξ = x− vf t):

− vf∂ξc = f(c) +D∂2
ξ c+ w(∂ξu, c) (11)

∂ξ((v2
f − V (c)2)∂ξu) = 0. (12)

For travelling waves with a positive velocity, vf , with
∂xu → (∂xu)0 and c → 0 when x → ∞, equation (12)
can be integrated once leading to:

(v2
f − V (c)2)(∂ξu) = (v2

f − V (0)2)(∂ξu)0. (13)

It results from equation (13) that if v2
f < V (0)2, then

(∂ξu) ≤ (∂ξu)0 < (∂ξu)c, so the coupling term w never
turns on. The mechanical coupling can turn on only if
v2

f > V (0)2, that is, if the wave is supersonic.
Solutions can be explicitly constructed when the func-

tion f(c) is replaced by a piecewise linear function of c:
f(c) = −Kc for c < c−, and f(c) = −K(c−c+) for c < c−.
Such an approximation for the kinetic function (Eq. (7)),
is expected to provide qualitatively good results. The main
conclusion obtained in [3] can be summarized as follows:
(i) There exists a family of slow travelling waves, where

the stress remains always smaller than the threshold
value (∂xu)c. For these waves, propagation is con-
trolled by diffusion, and not by mechanical effects:
vf ∝

√
DK.

(ii) There exists a family of fast wave solutions, where the
strain (∂xu) reaches the critical value, so the w term
is turned on. The velocity of these waves is supersonic:
vf > V (0). It was also found that the velocity of the
travelling wave increases when ((∂xu)0 − (∂xu)c)→ 0.
When there exists a value of c∗, such that vf = V (c∗),
equation (13) shows that a difficulty occurs, since equa-
tion (13) suggests a divergence of the strain.

We show in this section that similar conclusions can
be drawn in the case where c = 0 is an unstable state. We
will then study the problem numerically, and demonstrate
that the travelling wave solutions are indeed observable.

3.1 Analysis when c = 0 is an unstable fixed point

Mathematically, the problem of propagation of a front into
an unstable phase is significantly different from the prob-
lem of propagation into a metastable phase, even when the
coupling w with the mechanical field does not turn on. In-
stead of a discrete set of travelling wave solutions when
c = 0 is metastable, a continuum of solution is found: For
any vf > vm

f , one may find a steady front. However, when
the initial condition is such that c decays faster than ex-
ponentially at x → ∞ the solution tends asymptotically
to the slowest travelling wave [16–18].

We show here that in the presence of a non trivial
coupling with the velocity field, there exists a continuum
of supersonic travelling wave solutions, provided that the
front velocity is larger than some finite value.

As in [3], we use a piecewise linear approximation of
the function f :

f(c) = Kc for c < 1/2
f(c) = K(1− c) for c ≥ 1/2.

(14)

Subsonic travelling waves solutions can be easily found.
Introducing α± = 1

2D (−vf ±
√
v2

f − 4KD) and β± =
1

2D (−vf ±
√
v2

f + 4KD) (α± < 0, β+ > 0, β− < 0), the
function:

c(ξ) =
1

2(α+ − α−)

(
(α+ + β+) exp(α−ξ)

−(α− + β+) exp(α+ξ)
)

for ξ > 0

c(ξ) = 1− 1
2

exp(β+ξ) for ξ < 0

(15)

is a solution. This solution satisfies the physical constraint
that c should always be positive provided vf ≥ 2

√
KD.

There exists therefore a continuous family of solutions:
any velocity larger than vm

f =
√
KD is possible. However,

for a large class of initial conditions, the initial value prob-
lem leads to a front propagating at the smallest available
velocity: vm

f = 2
√
KD.

Fast waves, where the coupling term w turns on, can
also be found. We begin by rewriting equation (13) as:

(∂ξu) =
(v2

f − V (0)2)
(v2

f − V (c)2)
(∂ξu)0. (16)
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When v2
f > V (0)2, the strain increases when c increases,

and may possibly reach (∂ξu)c. Let cs the value of c, where
the strain reaches the critical value (∂ξu)c. The solution of
equation 11 may be determined by dividing up the domain
into three regions:

(i) ξ > ξs, where c < cs, ∂ξu < (∂ξu)c so w = 0;
(ii) 0 < ξ < ξs, where cs < c < 1/2, and ∂ξu > (∂ξu)c so

w 6= 0,
(iii) ξ ≤ 0, where c ≥ 1/2, and w 6= 0.

Explicitly, one finds for ξ ≤ 0 (region (iii)):

c(ξ) = (1 +W/K)− (1/2 +W/K) exp(β+ξ); (17)

for 0 < ξ ≤ ξs (region (ii)):

c(ξ) = −W/K +
(1/2 +W/K)

(α− − α+)

(
(α− + β+) exp(α+ξ)

− (α+ + β+) exp(α−ξ)
)

; (18)

and for ξs < ξ (region (i)):

c(ξ)=
(( α−
α+ − α−

) W

KD+
+
(α+ + β+

α− − α+

)(1
2

+
W

K

))
exp(α+ξ)

+
(( −α+

α+ − α−
) W

KD−
+
(α+ + β+

α+ − α−
)(1

2
+
W

K

))
exp(α−ξ)

(19)

where D± = exp(α±ξs), and the condition that c(ξs) = cs
imposes that:

cs = −W
K

+
(

1
2

+
W

K

)(
α− + β+

α− − α+
D+ +

α+ + β+

α+ − α−
D−

)
.

(20)

In the case we are considering, where D is small and
vf/KD� 1, β+ ' K/vf , α− ' −vf/D and α+ ' −K/vf .
In addition, D+ is a priori much larger than D−, which
allows to simplify equation (20) to:

ξs =
vf

K
ln
(1/2 +W/K

cs +W/K

)
· (21)

The solution thus explicitly determined depends on two
parameters: vf and cs. The two parameters are related by
the relation:

(∂ξu)c =
(v2

f − V (0)2)
(v2

f − V (cs)2)
(∂ξu)0 (22)

therefore demonstrating the existence of a 1 parameter
family of solution. The additional physical constraint that
c should be always positive restricts the range of possible
solution. In the case we are interested in vf � (KD)1/2, an
analysis of equation (19) shows that the value of c remains
always positive provided

vf ≥
(DW
cs

)1/2

· (23)

This relation is to be compared with the analysis of [3] in
the case where c = 0 is metastable (see Eq. (11) of [3]),
where an equality was found instead of the inequality,
(Eq. (23)). Combining equations (4, 22) and (23) (replac-
ing the inequality by an equality), one finds:

v2
f = V (0)2 +

(∂ξu)c
(∂ξu)c − (∂ξu)0

δV 2 tanh(cs) ≥
(DW
cs

)
.

(24)

The inequality in equation (24) shows that cs must be
larger than a given quantity, hence, vf must be larger than
a minimum velocity. Similarly to the purely diffusive case,
one finds that the solutions for c are possible provided the
velocity vf is large enough. In the limit ((∂ξu)c−(∂ξu)0)→
0, cs & ((∂ξu)c − (∂ξu)0)−1/2 which implies in turn that
the smallest possible value of vf is larger than ((∂ξu)c −
(∂ξu)0)−1/4.

At this point, we have shown the existence of a family
of travelling wave solutions depending on one parameter.
From this point of view, the situation for fast waves is com-
pletely similar to the situation for slow, diffusive waves.

Although there is no theorem proving that for initial
conditions decaying fast enough when ξ → ∞ the solu-
tion of the full time dependent problem behaves when
t→∞ as a front moving with the lowest possible velocity,
heuristic arguments suggest that it should be the case in
our problem. If it is indeed the case, then the behavior of
the time dependent solution, and the observed velocities
of the travelling waves should be identical to what hap-
pens for the metastable case. For lack of a genuine proof,
we will rest on numerical simulations to demonstrate this
fact.

The difficulty about the possible divergence of the
strain when the waves are not fast enough (v2

f < V (1)2),
obvious from equation (16), shows that the strain profile
cannot be stationary. This is true when c = 0 is either
stable or metastable. However, the c profile, which is not
sensitive to the details of the strain profile, may be sta-
tionary. The results of numerical simulations presented in
the following subsection allow us to address this problem.

4 Numerical study of travelling waves

In a system initially at rest (c = 0, (∂ξu) = (∂ξu)0 = 1)
we introduce at t = 0 a mechanical perturbation near
x = 0. Postponing the discussion of the ignition problem
to the next section, we simply state that fast supersonic
waves may be ignited when the mechanical perturbation
is strong enough.

Figure 1 shows travelling wave solution when the ki-
netics is of second order (c = 0 is metastable) when
(∂xu)c = 1.075, Figure 1a, and when (∂xu)c = 1.00625,
Figure 1b. The dashed curves show the c profile, and
the full lines show the strain profiles. The solution is
moving right, two consecutive solutions are separated by
∆T = 6.25. The velocities of the c-front were in both
cases found to be supersonic, as expected: vf = 5.33 in
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(a) (b)

Fig. 1. Propagation of a front in the case of second order kinetics. The dashed lines correspond to the c profile, the full lines to
the strain profile. The solution propagates from left to right; two consecutive solutions are separated by ∆T = 6.25. Fast waves
are shown, propagating at a supersonic velocity: vf = 5.33 ((∂xu)c = 1.075) (a) and vf = 6.78 (b) ((∂xu)c = 1.00625); the sound
velocity is V (0) = 5. In Figure 1a, the wave velocity is smaller than V (1) = 5.44; and the strain develops a spike of strain,
whose amplitude grows roughly linearly with time. A small amount of viscosity does not change qualitatively the picture. In
Figure 1b, the wave velocity is larger than V (c = 1), and the strain profile reaches a steady shape in the region of the front.
The parameters used in the simulation are ∆x = 0.1, ∆t = 0.0025, D = 1., u = 0.2, A = 1.

Figure 1a, vf = 6.78 in Figure 1b, both larger than
V (0) = 5. However, in Figure 1a, the front velocity is
smaller than V (c = 1) (δV 2 = 6, so V (c = 1) = 5.44),
whereas in Figure 1b, it is larger. The striking conse-
quence is that in Figure 1a, the very narrow peak in the
strain profile grows seemingly without limit, whereas in
Figure 1b, the strain profile evolves towards a steady pro-
file in the front region. We checked that in agreement with
equation (13), (v2

f − V (c)2)(∂xu) is constant in the front
region. In the conditions of Figure 1a, a small amount of
viscosity does not prevent the formation and growth of an
ever growing peak of strain. Figure 1a demonstrates that
the growth of the maximum of strain is roughly linear
in time.

The difference of behavior between Figure 1a (vf <
V (1)) and Figure 1b (vf > V (1)) can be understood qual-
itatively. Behind the front, strain perturbations propa-
gate with a velocity V (1). Hence, when vf > V (1), the
strain perturbation is made of a front propagating ahead
of the perturbation, with a velocity vf , and a front be-
hind it, moving at a velocity V (1). As a result, the size of
the region where the strain is perturbed grows linearly in
time, as observed numerically (Fig. 1b). In the other case,
when vf < V (1), the front at the rear of the perturbation
would propagate at V (1), and would run into the slower
front ahead. As a result, the strain is concentrated over a
narrow region, as observed (Fig. 1a).

This points out to a limitation of our model: when
(∂xu)c−(∂xu)0 is too large, the wave velocity is too small,
and the strain ∂xu seems to grow for ever (in spite of
this difficulty, the c-front is observed to move steadily).

Nonlinear aspects of elasticity theory, such as plasticity,
must be taken into account to solve this problem. On the
other hand, when (∂xu)c − (∂xu)0 is not too large, the
model is consistent in the sense that the generated strain
remains finite.

Qualitatively very similar results were observed in the
case where the kinetics is of first order (c = 0 is unsta-
ble). The solutions in physical space are essentially indis-
tinguishable from the solutions shown in Figure 1 in the
second order kinetics case. A spike of strain grows linearly
with time when the velocity is too small.

In all cases, the wave velocity decreases when (∂xu)c−
(∂xu)0 increases. The dependence of the front velocity vf

as a function of the threshold (∂xu)c − (∂xu)0 is shown
in Figures 2a, b, in the case of a second order kinetics
(Fig. 2a) and in the case of a first order kinetics (Fig. 2b).
The two curves are strikingly similar, and show a diver-
gence of the wave velocity when (∂xu)c − (∂xu)0 → 0, as
expected. Figure 2c shows the velocity vf as a function
of ((∂xu)c − (∂xu)0)−1/4, in the case of the second order
kinetics. The dependence of the velocity is as much as one
can tell linear for large values of ((∂xu)c− (∂xu)0)−1/4, in
agreement with the analytic estimates. Again, the curve
obtained in the case of a first order kinetics would be
completely similar.

Figure 2d shows the dependence of the front velocity
as a function of W0. Not surprisingly, vf is an increasing
function of W0. Based on equations (4,22) and (23), one
expects that the wave velocity will behave as W 1/4 when
W →∞. This is consistent with our numerical results.
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(a) (b)

(c) (d)

Fig. 2. Dependence of the velocity of propagation of fronts as a function of the parameters. Figures 2a-c show the dependence
of vf as a function of (∂xu)c, and Figure 2d show the dependence of vf as a function of W . Figure 2a (respectively 2b) shows
vf as a function of (∂xu)c for a second order (respectively first order) kinetics. In both cases, the velocity tends to V (0)
when (∂xu)c − (∂xu)0 is large, and to ∞ when (∂xu)c − (∂xu)0 → 0. Figure 2c shows the data of Figure 2a as a function of
((∂xu)c − (∂xu)0)−1/4, in agreement with the prediction that the velocity diverges with a −1/4 power. Figure 2d shows the
dependence of vf as a function of W0. The slow increase of vf when W increases is consistent with a W 1/4 behavior.

5 Ignition of fast waves

The phenomena we are interested in, as explained in the
introduction, involve in a crucial way mechanical pertur-
bations. This suggests to consider the following problem:
starting from a uniform state, at rest, initially in the
metastable/unstable phase (c = 0) with a uniform strain
(∂xu)0, one introduces at t = 0 a mechanical perturba-
tion localized near x = 0: ∂xu = (∂xu)0 + δuF (x), where
F = 0, except in a neighborhood of x = 0 (maxF (x) = 1).
The problem is to understand the response of the system
to this perturbation.

The evolution of the system can be qualitatively un-
derstood by considering first the case where δV 2 → 0
(V 2(c) = V 2(0)). The wave equation (1) for (∂xu) can
then be easily solved:

(∂xu)(x, t) =
1
2

(
(∂xu)(x− V (0)t, 0)

+ (∂xu)(x+ V (0)t, 0)
)

(25)

where (∂xu)(x, 0) is the initial condition: (∂xu)(x, 0) =
(∂xu)0 + δuF (x). In deriving equation (25), it is assumed
that at t = 0, ∂tu(x, t = 0) = 0. After a transient,
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the solution at time t > 0 will be made of two local-
ized perturbations of amplitude δu/2 (half the amplitude
of the initial condition), located around x = ±V (0)t. This
leads to the three different possibilities:

Regime A: If δu ≤ ((∂xu)c − (∂xu)0), the value of the
strain is always smaller than the threshold value (∂xu)c.
As a consequence, the w term never turns on. As such,
the chemical/phase transformation is unaffected by the
mechanical perturbation, which is simply radiated away.

Regime B: If ((∂xu)c − (∂xu)0) < δu ≤ 2((∂xu)c −
(∂xu)0), then, the mechanical perturbation is initially
strong enough to turn on the w term. As a result, the
chemical wave starts. However, the initial strain pertur-
bation eventually decays as it is radiated away from the
x = 0 region, and after a while, the amplitude of the strain
is everywhere lower than the excitation threshold, (∂xu)c.
This implies that the strain wave is not strong enough
to maintain the mechanical coupling; as a result, only the
diffusive mode of propagation is possible, after a transient.

Regime C: If 2((∂xu)c− (∂xu)0) < δu the amplitude of
the strain at x = ±V (0)t is always larger than the thresh-
old value (∂xu)c, so the chemical/phase transformation is
triggered by the mechanical wave; fast waves are excited.

Effectively, a non zero δV 2 in the mechanical equation
adds a source of strain, due to the coupling with c. As
an example, a slow front driven by diffusion will generate
a strain signal, which will propagate ahead of the front.
The problem of strain radiation by a chemical front has
been considered, in a somewhat related context in [19].
The result of this radiation is that in the case B above,
the amplitude of the strain pulse propagating ahead of
the front is affected, and as a consequence, the threshold
for the ignition of fast wave. An accurate determination
of the radiated strain by a front is therefore necessary to
estimate the ignition threshold for fast waves. Obviously,
in the regime A, δu < ((∂xu)c − (∂xu)0)), the conclusion
that the chemical/phase transformation does not start is
unaffected by the radiation of strain waves.

To estimate the amount of strain radiated by a front,
it is convenient to expand the solution of equation (1) in
power of δV 2/V (0)2 considered as a small parameter:

(∂xu) = (∂xu)0 + (∂xu)1 + ... (26)

where (∂xu)n = O(δV 2n/V (0)2n). Substituting in equa-
tion (1) one finds the two first orders:

∂2
t (∂xu)0 − ∂2

x(V (0)2∂xu)0 = 0 (27)

∂2
t (∂xu)1 − ∂2

x(V (0)2∂xu)1 − ∂2
x

(
(δV 2(c))(∂xu)0

)
= 0

(28)

where δV 2(c) ≡ (V 2(c)− V 2(0)). This initial condition is
(∂xu)0 = (∂xu)(x, t = 0) and (∂xu)1 = 0. The solution
of equation (27) is simply given by equation (25). Once
(∂xu)0 is known, equation (28) can be solved in closed

form:

(∂xu)1 = − 1
2V (0)

×
∫ t

0

dt′
[
∂x(δV 2(c)(∂xu)0)(x− V (0)(t− t′), t′)

− ∂x(δV 2(c)(∂xu)0)(x+ V (0)(t− t′), t′)
]
. (29)

In the regime B when δV 2 = 0, a subsonic wave
of chemical/phase transformation is ignited. A front of
strain is radiated ahead of the chemical front, propagat-
ing at a velocity vf . The distance between the chem-
ical and the strain front grows like (V (0) − vf)t. To
estimate the amplitude of the strain perturbation, we
simply perform the integral equation (29) near the point
reached by the radiated strain wave at time t. Specifically,∫ t

0 dt′∂x(δV 2(c)(∂xu)0)(x−V (0)(t− t′), t′) is rewritten as
is written as 1

(V (0)−vf)

∫
dξ∂x(δV 2(c)(∂xu)0)(ξ, 0) by using

the fact that, in the integrand, the function δV 2(c)(x, t) =
δV 2(c)(x − vf t, 0) (steadily propagating chemical front),
and by using the change of variable t′ = t−x/(V (0)−vf).
The amplitude of the radiated strain wave is then simply:

u1 =
(V 2(c = 1)− V 2(c = 0))

V (0)(V (0)− vf)
(∂xu)0. (30)

The strain wave generated by a subsonic chemical wave
has been computed by numerical simulation of the equa-
tions (1, 2), and shown to be in very good agreement with
the prediction of equation (30).

The strain generated by the subsonic front enhances
the initial strain pulse, (∂xu)0. As a result, the slow,
subsonic chemical wave becomes supersonic if the am-
plitude of the initial strain wave, δu/2 plus the ampli-
tude generated by the slow front, u1, becomes larger than
(∂xu)c−(∂xu)0. This implies that the threshold of ignition
of fast waves is

δuth ≈ inf
(

2((∂xu)c − (∂xu)0 − u1), ((∂xu)c − (∂xu)0)
)
.

(31)

In equation (31), we explicitly use the fact that the ig-
nition threshold for fast waves cannot be less that the
ignition threshold for slow waves, (∂xu)c − (∂xu)0. This
opens the possibility that when (∂xu)c − (∂xu)0 is small
enough, a mechanical perturbation can only excite fast
waves. Equation (31) comes from an expansion in powers
of δV 2, and effectively assumes that the radiated strain
waves remain small.

The prediction of equation (31) has been tested by
solving directly the partial differential equations equa-
tion (1, 2). The problem is complicated by the fact that
the ignition threshold depends in fact on the precise shape
of the function F . As an example, the measured ignition
threshold, defined as the amplitude δuth above which a
fast wave is generated, was in fact found to depend on the
overall size over which the function F is localized (in other
words, on the function F∆, defined as F∆(x) = F (x/∆)).
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(a) (b)

Fig. 3. The ignition threshold of fast waves as a function of ∂2
V for (∂xu)c = 1.1 (a) and (∂xu)c = 1.2 (b); (V (0)2 = 25,

(∂xu)0 = 1). The ignition threshold decreases roughly linearly when δV 2 increases, until it reaches (∂xu)c− (∂xu)0, as expected
from equation (31).

This dependence can be understood by carefully investi-
gating the transient regime shortly after the mechanical
perturbation has been applied. In view of this dependence,
it would be more correct to interpret equation (31) as an
upper bound for the ignition threshold: the details of the
transients may lead to a lower ignition threshold, but any
perturbation with an amplitude higher than δuth will nec-
essarily lead to the nucleation of a fast wave.

Still, equation (30) predicts qualitatively the correct
behavior of the ignition threshold (for a given shape of
the function F ) on the other parameters of the problem,
such as V (0)2, δV 2 and (∂xu)c ((∂xu)0 being fixed). As
an example, we show, Figure 3, the dependence of the
ignition threshold on δV 2, at several values of (∂xu)c:
(∂xu)c = 1.1 (Fig. 3a) and (∂xu)c = 1.2 (Fig. 3b). As
predicted by equation (31), the ignition threshold δuth is
equal to 2((∂xu)c − (∂xu)0) when δV 2 → 0. The ignition
threshold decreases roughly linearly when δV 2 increases,
until it reaches the constant value δuth = ((∂xu)c−(∂xu)0)
at large values of δV 2. The fact that the ignition thresh-
old is not strictly linear as a function of δV 2 is not unex-
pected, since equation (31) comes from the lowest order
in a perturbation expansion in δV 2. In the same spirit,
Figure 4 shows the dependence of the ignition threshold as
a function of the the value of the threshold (∂xu)c, at fixed
δV 2 (δV 2 = 2 in Fig. 4a and δV 2 = 4 in Fig. 4b). When
((∂xu)c − (∂xu)0) is small enough, the ignition threshold
is equal to ((∂xu)c − (∂xu)0). At larger values, a change
of slope from 1 to ≈ 2 is observed in the curves, as ex-
pected from equation (31). As before, although deviations
from the predicted behavior are observed, the qualitative
results are well captured by equation (31).

The estimates presented in this section suggest that
the ignition threshold for fast waves should be essentially

independent of the parameter W ; this is fully consistent
with our numerical results.

6 Conclusions

In this article, we have explored a number of properties of
the model proposed in [3] in order to describe a number
of fast chemical or phase transformation. We have first
extended the results concerning the existence of travelling
waves with second order kinetics to first order kinetics.
Our numerical results have demonstrated that fast trav-
elling waves spontaneously appear for a large class of ini-
tial conditions. Finally, we have considered the problem
of ignition of fast waves by mechanical perturbations, and
computed the ignition threshold of supersonic waves.

Our results concerning the growth of a strain spike
for otherwise steadily propagating c-fronts suggest that
our model, in its present version, is incomplete, and that
nonlinear elasticity effects, such as plasticity, should also
be included. We believe that this problem can be easily
fixed.

Although we have not explicitly obtained analytical
stability results for the fast fronts, our numerical results
suggest that fronts are stable in 1-dimension. Results con-
cerning the stability of fronts in higher dimension, or in
the presence of impurities would be of interest for more
physical applications.

The proposal that propagation may be induced by
a coupling between phase transformation and mechan-
ics, as described by the model equations (1,2) remains
to be explored experimentally. The key question consists
in proving that during the decomposition of a metastable
phase, eventually leading to explosion, a phase/chemical
transformation occurs and couples to elastic waves.
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(a) (b)

Fig. 4. The ignition threshold of fast waves as a function of (∂xu)c for δV 2 = 2. (a) and δV 2 = 4. (b); (V (0)2 = 25, (∂xu)0 = 1.).
The ignition threshold is equal first to (∂xu)c − (∂xu)0, and then increases roughly like 2((∂xu)c − (∂xu)0), as expected from
equation (31). Roughly linearly when δV 2 increases, until it reaches (∂xu)c − (∂xu)0.

We believe that it deserves a careful experimental
investigation.
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